Abstract
Rapid and accurate acquisition and analysis of information is crucial for emergency management, but traditional methods have limitations such as incomplete information acquisition and slow processing speed. The natural language oriented spatial scene reconstruction method provides a new solution for emergency management, but existing generative models have limited understanding of spatial relationships and lack high-quality training samples. To address these issues, this paper proposes a novel spatial scene reconstruction framework. Specifically, the BERT based spatial information knowledge graph extraction method is used to encode the input text, label and classify the encoded text, identify spatial objects and relationships in the text, and accurately extract spatial information. Additionally, a large number of manual experiments were conducted to explore quantitative biases in human spatial cognition, and based on the obtained biases, a greedy resolution method based on cost functions was used to fine tune the layout of conflicting spatial objects and solve the conflicting spatial information in the spatial information knowledge graph. Finally, use graph convolutional neural networks to obtain scene knowledge graph embeddings that consider spatial constraints. In addition, a high-quality training sample set of “text-scene-knowledge graph” was constructed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.