Abstract

Spatial proteomics can reveal the spatial organization of immune cells in the tumor immune microenvironment. Relating measures of spatial clustering, such as Ripley's K or Besag's L, to patient outcomes may offer important clinical insights. However, these measures require pre-specifying a radius in which to quantify clustering, yet no consensus exists on the optimal radius which may be context-specific. We propose a SPatial Omnibus Test (SPOT) which conducts this analysis across a range of candidate radii. At each radius, SPOT evaluates the association between the spatial summary and outcome, adjusting for confounders. SPOT then aggregates results across radii using the Cauchy combination test, yielding an omnibus P-value characterizing the overall degree of association. Using simulations, we verify that the type I error rate is controlled and show SPOT can be more powerful than alternatives. We also apply SPOT to ovarian and lung cancer studies. An R package and tutorial are provided at https://github.com/sarahsamorodnitsky/SPOT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.