Abstract

Indoor environmental quality (IEQ), driven by thermal comfort and indoor air quality (IAQ), is a major factor that impacts occupant's well-being and productivity since people spend 80–90 % of their time indoors. The current approaches for assessing and quantifying IEQ presume fixed values and ranges in naturally ventilated (NV) spaces within the simulation environment. However, such an approach cannot capture point-to-point changes that occur in the built environment due to localized variations of environmental variables such as air velocity and temperature. This study proposes a sensing and simulation-based framework, Spatial Mapping of Thermal Comfort and Air Quality (SMTC-AQ) in a computational fluid dynamics (CFD) environment to address this. Salient characteristics of SMTC-AQ include the modification of predicted mean vote (PMV) for NV spaces, specifically for the Indian context, and the implementation of the under-explored concept of domain-decoupling utilizing the ISHRAE weather file. Using SMTC-AQ, the study determines the optimal window-to-wall ratio (WWR) and opening-to-wall ratio (OWR) for a case study room in an Indian academic building, considering both IAQ and thermal comfort. In the study, indoor air velocity and temperature are first validated with field data, followed by a scenario analysis to assess the impact of opening characteristics on IEQ. The findings show that for building spaces in tropical climates with moderate outdoor temperatures and lower relative humidity, thermal comfort, and IAQ can be improved by implementing higher WWR and OWR. Moreover, WWR is a more relevant criterion for improving thermal comfort and a better OWR design is crucial for enhancing IAQ in NV spaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call