Abstract
In this paper, a spatial fractional-order thermal transport equation with the Caputo derivative is proposed to describe convective heat transfer of nanofluids within disordered porous media in boundary layer flow. This equation arises naturally when the effect of anomalous migration of nanoparticles on heat transfer is considered. The numerical results show that local Nusselt numbers of four different kinds of nanofluids are all inversely proportional to the fractional derivative exponent β. Based on this finding, it is concluded that the anomalous diffusion of nanoparticles improves the convective heat transfer of nanofluids and the space fractional thermal transport equation may serve as a candidate model for studying nanofluids. Additionally, the effects of other involved physical parameters on temperature distribution and Nusselt number are presented and analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.