Abstract

This paper presents for the first time a novel two degrees of freedom (2-DOF) single-looped dual-plane-symmetric spatial eight-bar linkage with exact straight-line motion. Geometry and kinematics of the eight-bar linkage are investigated and closed-form equations are presented revealing the exact straight-line motion feature of the linkage on the condition that two symmetric inputs are given. In order to secure two symmetric inputs, a geared eight-bar linkage is then proposed converting the linkage into a 1-DOF linkage of exact straight-line motion. The direction of the straight-line motion produced by the proposed eight-bar linkage is changeable and is only dependent on the structure parameters of the two pairs of V-shaped R-R dyads of the linkage. Further, the proposed eight-bar linkage is applied to the synthesis and construction of a group of deployable Platonic mechanisms with radially reciprocating motion. The virtual-center-based (VCB) method is presented for the synthesis and prototypes of the deployable Platonic mechanisms are fabricated verifying the mobility and motion of the proposed mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call