Abstract

In many modern image processing applications determining quality of the image is one of the most challenging tasks. Researchers working in the field of image quality assessment design algorithms for measuring and quantifying image quality. The human eye can identify the difference between a good quality image and a noisy image by simply looking at the image, but designing a computer algorithm to automatically determine the quality of an image is a very challenging task. In this paper, we propose an image quality measure using the concept of object separability. We define object separability using variance. Two objects are very well separated if variance of individual object is less and mean pixel values of neighboring objects are very different. Degradation in images can be due to a number of reasons like additive noises, quantization defects, sampling defects, etc. The proposed no-reference image quality measure will determine quality of degraded images and differentiate between good and degraded images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.