Abstract
Wildland fire smoke contains hazardous levels of fine particulate matter (PM2.5), a pollutant shown to adversely effect health. Estimating fire attributable PM2.5 concentrations is key to quantifying the impact on air quality and subsequent health burden. This is a challenging problem since only total PM2.5 is measured at monitoring stations and both fire-attributable PM2.5 and PM2.5 from all other sources are correlated in space and time. We propose a framework for estimating fire-contributed PM2.5 and PM2.5 from all other sources using a novel causal inference framework and bias-adjusted chemical model representations of PM2.5 under counterfactual scenarios. The chemical model representation of PM2.5 for this analysis is simulated using Community Multiscale Air Quality Modeling System (CMAQ), run with and without fire emissions across the contiguous U.S. for the 2008-2012 wildfire seasons. The CMAQ output is calibrated with observations from monitoring sites for the same spatial domain and time period. We use a Bayesian model that accounts for spatial variation to estimate the effect of wildland fires on PM2.5 and state assumptions under which the estimate has a valid causal interpretation. Our results include estimates of the contributions of wildfire smoke to PM2.5 for the contiguous U.S. Additionally, we compute the health burden associated with the PM2.5 attributable to wildfire smoke.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.