Abstract

Advances in field techniques have lead to an increase in spatially referenced capture–recapture data to estimate a species' population size as well as other demographic parameters and patterns of space usage. Statistical models for these data have assumed that the number of individuals in the population and their spatial locations follow a homogeneous Poisson point process model, which implies that the individuals are uniformly and independently distributed over the spatial domain of interest. In many applications, there is reason to question independence, for example, when species display territorial behavior. In this paper, we propose a new statistical model, which allows for dependence between locations to account for avoidance or territorial behavior. We show via a simulation study that accounting for this can improve population size estimates. The method is illustrated using a case study of small mammal trapping data to estimate avoidance and population density of adult female field voles (Microtus agrestis) in Northern England. Copyright © 2014 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.