Abstract

Mitochondrial genome expression is important for cellular bioenergetics. How mitochondrial RNA processing and translation are spatially organized across dynamic mitochondrial networks is not well understood. Here, we report that processed mitochondrial RNAs are consolidated with mitoribosome components into translation hubs distal to either nucleoids or processing granules in human cells. During stress, these hubs are remodeled into translationally repressed mesoscale bodies containing messenger, ribosomal, and double-stranded RNA. We show that the highly conserved helicase SUV3 contributes to the distribution of processed RNA within mitochondrial networks, and that stress bodies form downstream of proteostatic stress in cells lacking SUV3 unwinding activity. We propose that the spatial organization of nascent chain synthesis into discrete domains serves to throttle the flow of genetic information in stress to ensure mitochondrial quality control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.