Abstract

We develop a sparse spectral method for a class of fractional differential equations, posed on R\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {R}$$\\end{document}, in one dimension. These equations may include sqrt-Laplacian, Hilbert, derivative, and identity terms. The numerical method utilizes a basis consisting of weighted Chebyshev polynomials of the second kind in conjunction with their Hilbert transforms. The former functions are supported on [-1,1]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$[-1,1]$$\\end{document} whereas the latter have global support. The global approximation space may contain different affine transformations of the basis, mapping [-1,1]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$[-1,1]$$\\end{document} to other intervals. Remarkably, not only are the induced linear systems sparse, but the operator decouples across the different affine transformations. Hence, the solve reduces to solving K independent sparse linear systems of size O(n)×O(n)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {O}(n)\ imes \\mathcal {O}(n)$$\\end{document}, with O(n)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {O}(n)$$\\end{document} nonzero entries, where K is the number of different intervals and n is the highest polynomial degree contained in the sum space. This results in an O(n)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathcal {O}(n)$$\\end{document} complexity solve. Applications to fractional heat and wave equations are considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call