Abstract

Copy-move image forgery is the act of cloning a restricted region in the image and pasting it once or multiple times within that same image. This procedure intends to cover a certain feature, probably a person or an object, in the processed image or emphasize it through duplication. Consequences of this malicious operation can be unexpectedly harmful. Hence, the present paper proposes a new approach that automatically detects Copy-move Forgery (CMF). In particular, this work broaches a widely common open issue in CMF research literature that is detecting CMF within smooth areas. Indeed, the proposed approach represents the image blocks as a sparse linear combination of pre-learned bases (a mixture of texture and color-wise small patches) which allows a robust description of smooth patches. The reported experimental results demonstrate the effectiveness of the proposed approach in identifying the forged regions in CM attacks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.