Abstract

In this paper, we deal with an optimal control problem governed by the convection diffusion equations with random field in its coefficients. Mathematically, we prove the necessary and sufficient optimality conditions for the optimal control problem. Computationally, we establish a scheme to approximate the optimality system through the discretization by the upwind finite volume element method for the physical space, and by the sparse grid stochastic collocation algorithm based on the Smolyak construction for the probability space, which leads to the discrete solution of uncoupled deterministic problems. Moreover, the existence and uniqueness of the discrete solution are given. A priori error estimates are derived for the state, the co-state and the control variables. Numerical examples are presented to illustrate our theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.