Abstract
This paper proposed a feature extraction scheme based on sparse representation considering the non-stationary property of surface electromyography (sEMG). Sparse Bayesian learning was introduced to extract the feature with optimal class separability to improve recognition accuracy of multi-movement patterns. The extracted feature, sparse representation coefficients (SRC), represented time-varying characteristics of sEMG effectively because of the compressibility (or weak sparsity) of the signal in some transformed domains. We investigated the effect of the proposed feature by comparing with other fourteen individual features in offline recognition. The results demonstrated the proposed feature revealed important dynamic information in the sEMG signals. The multi-feature sets formed by the SRC and other single feature yielded more superior performance on recognition accuracy, compared with the single features. The best average recognition accuracy of 94.33% was gained by using SVM classifier with the multi-feature set combining the feature SRC, Williston amplitude (WAMP), wavelength (WL) and the coefficients of the fourth order autoregressive model (ARC4) via multiple kernel learning framework. The proposed feature extraction scheme (known as SRC + WAMP + WL + ARC4) is a promising method for multi-movement recognition with high accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Australasian physical & engineering sciences in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.