Abstract
This paper presents a new algorithm for performing global value numbering on a routine in static single assignment form. Our algorithm has all the strengths of the most powerful existing practical methods of global value numbering; it unifies optimistic value numbering with constant folding, algebraic simplification and unreachable code elimination. It goes beyond existing methods by unifying optimistic value numbering with further analyses: it canonicalizes the structure of expressions in order to expose more congruences by performing global reassociation , it exploits the congruences induced by the predicates of conditional jumps ( predicate inference and value inference ), and it associates the arguments of acyclic ø functions with the predicates controlling their arrival ( ø predication ), thus enabling congruence finding on conditional control structures. Finally, it implements an efficient sparse formulation and offers a range of tradeoffs between compilation time and optimization strength. We describe an implementation of the algorithm and present measurements of its strength and efficiency collected when optimizing the SPEC CINT2000 C benchmarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.