Abstract
Membrane distillation (MD) is a versatile low-temperature separation process used for desalinating saline solutions with high salt rejection rates. Its current drawbacks include low flux and high energy demand. This study presents localized electrically induced heating using ceramic-coated metallic spacers to improve MD performance. We coated Ni-Cr spacers with MgO via electrolytic deposition and calcination, optimizing for a crack-free protective surface. Smaller wire diameter Ni-Cr exhibited superior heating. When a periodic current of 0.2 A cm−2 was applied, permeate flux increased by 15% although energy consumption only increased by 4%. Continuous supply of high-grade electrical energy added no further performance improvement as compared to periodic application. Our work highlights a spacer-based approach for localized Joule heating in MD systems without compromising membrane structure, while exploring coating systems to protect conductive spacers and optimizing schemes for electrically controlled performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.