Abstract

Sea surface temperature (SST) prediction has attracted increasing attention, due to its crucial role in understanding the Earth’s climate and ocean system. Existing SST prediction methods are typically based on either physics-based numerical methods or data-driven methods. Physics-based numerical methods rely on marine physics equations and have stable and explicable outputs, while data-driven methods are flexible in adapting to data and are capable of detecting unexpected patterns. We believe that these two types of method are complementary to each other, and their combination can potentially achieve better performances. In this paper, a space-time partial differential equation (PDE) is employed to form a novel physics-based deep learning framework, named the space-time PDE-guided neural network (STPDE-Net), to predict daily SST. Comprehensive experiments for SST prediction were conducted, and the results proved that our method could outperform the traditional finite-difference forecast method and several state-of-the-art deep learning and physics-guided deep learning methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.