Abstract
In this paper, the space-time generalized finite difference scheme is applied to solve the nonlinear high-order Korteweg-de Vries equations in multiple dimensions. The proposed numerical scheme combines the space-time generalized finite difference method, the Levenberg-Marquardt algorithm, and a time-marching approach. The space-time generalized finite difference method treats the temporal axis as a spatial axis, enabling the proposed scheme to discretize all derivatives in the governing equation. This is accomplished through Taylor series expansion and the moving least squares method. Due to the expandability of the Taylor series to any order, the proposed numerical scheme excels in efficiently handling mixed and higher-order derivatives. These capabilities are distinct advantages of the proposed scheme. The resulting system of algebraic equations is sparse but overdetermined. Therefore, the Levenberg-Marquardt algorithm is directly applied to solve this nonlinear algebraic system. During the calculation process, the time-marching approach reduces computational effort and improves efficiency by dividing the space-time domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.