Abstract

In this paper, the space-time generalized finite difference scheme is proposed to effectively solve the unsteady double-diffusive natural convection problem in the fluid-saturated porous media. In such a case, it is mathematically described by nonlinear time-dependent partial differential equations based on Darcy's law. In this work, the space-time approach is applied using a combination of the generalized finite difference, Newton-Raphson, and time-marching methods. In the space-time generalized finite difference scheme, the spatial and temporal derivatives can be performed using the technique for spatial discretization. Thus, the stability of the proposed numerical scheme is determined by the generalized finite difference method. Due to the property of this numerical method, which is based on the Taylor series expansion and the moving-least square method, the resultant matrix system is a sparse matrix. Then, the Newton-Raphson method is used to solve the nonlinear system efficiently. Furthermore, the time-marching method is utilized to proceed along the time axis after a numerical process in one space-time domain. By using this method, the proposed numerical scheme can efficiently simulate the problems which have an unpredictable end time. In this study, three benchmark examples are tested to verify the capability of the proposed meshless scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call