Abstract
A space-time discontinuous Galerkin spectral element method is combined with two different approaches for treating problems with discontinuous solutions: (i) adding a space-time dependent artificial viscosity, and (ii) tracking the discontinuity with space-time spectral accuracy. A Picard iteration method is employed to solve nonlinear system of equations derived from the space-time DG spectral element discretization. Spectral accuracy in both space and time is demonstrated for the Burgers’ equation with a smooth solution. For tests with discontinuities, the present space-time method enables better accuracy at capturing the shock strength in the element containing shock when higher order polynomials in both space and time are used. The spectral accuracy of the shock speed and location is demonstrated for the solution of the inviscid Burgers’ equation obtained by the tracking method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.