Abstract
We show that one-way Π2-alternating Turing machines cannot accept unary nonregular languages in o(log n) space. This holds for an accept mode of space complexity measure, defined as the worst cost of any accepting computation. This lower bound should be compared with the corresponding bound for one-way Σ2-alternating machines, that are able to accept unary nonregular languages in space O(log log n). Thus, Σ2-alternation is more powerful than Π2-alternation for space bounded one-way machines with unary inputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.