Abstract
The space-borne synthetic aperture radar (SAR) azimuth multi-channel system has extensive applications because it can achieve high-resolution and wide-swath radar imaging. The thermal noise generated by the radar receiver of each channel during operation will cause an imbalance between channels. If the echoes of each channel are quantized with the same number of bits without considering the influence of thermal noise, false targets will appear in the imaging consequences. Considering that the thermal noise generated in the receiver will affect the quantization process of the space-borne SAR azimuth multi-channel system, a new space-borne SAR azimuth multi-channel quantization method is proposed to improve this problem. Firstly, the pure noise power of the receiver is calculated without transmitting the radar signal. The signal power is estimated by subtracting the pure noise power from the total power. Then, the average value of the radar echo signal minus k times the standard deviation is used as the left endpoint of the original data amplitude range, and the average value of the radar echo signal plus k times the standard deviation is used as the right endpoint of the original data amplitude range. The original echo data after adjusting the amplitude range is quantified. This method can effectively reduce the influence of thermal noise and random outliers in the receiver on quantization and suppress the appearance of false targets. Finally, simulation is used to confirm the viability of the suggested quantization approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.