Abstract
This paper reports a design study for a space-based decametric wavelength telescope. While not a new concept, this design study focused on many of the operational aspects that would be required for an actual mission. This design optimized the number of spacecraft to insure good visibility of approx. 80% of the radio galaxies -- the primary science target for the mission. A 5,000 km lunar orbit was selected to guarantee minimal gravitational perturbations from Earth and lower radio interference. Optimal schemes for data downlink, spacecraft ranging, and power consumption were identified. An optimal mission duration of 1 year was chosen based on science goals, payload complexity, and other factors. Finally, preliminary simulations showing image reconstruction were conducted to confirm viability of the mission. This work is intended to show the viability and science benefits of conducting multi-spacecraft networked radio astronomy missions in the next few years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.