Abstract

Phytophthora sojae infection severely impairs soybean production. We previously identified a dirigent protein, GmDRR1 (Glycine max Disease Resistant Response 1), that increases soybean resistance to P. sojae. However, the molecular basis of GmDRR1 function remained largely uncharacterized. In the present study, analysis of GmDRR1-RNAi, GmDRR1-overexpressing, and CRISPR/Cas9-derived Gmdrr1 mutant lines revealed that GmDRR1 expression significantly restricted P. sojae growth. Combining co-immunoprecipitation with liquid chromatography–tandem mass spectrometry revealed a GmDRR1-interacting protein, GmDRR2, which is homologous to GmDRR1. An E-coniferyl alcohol coupling assay indicated that GmDRR1 promotes the synthesis of (+)-pinoresinol, which helps to protect plants from P. sojae. The GmNAC1 (Glyma.05G025500) transcription factor bound to the GmDRR1 promoter both in vitro and in vivo to upregulate GmDRR1 expression. Soybean resistance to P. sojae was increased by overexpression of GmNAC1. Our findings suggest a novel signaling pathway involving a NAC transcription factor that mediates soybean resistance to P. sojae. Specifically, GmNAC1 directly induces GmDRR1 expression to increase resistance of soybean plants to P. sojae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.