Abstract

The transcription factor gene Sox2 is expressed in embryonic neural stem/progenitor cells and previous evidence suggests that it is also expressed in adult neural stem cells. To target Sox2-expressing neural stem/progenitor cells in a temporal manner, we generated a bacterial artificial chromosome (BAC) transgenic mouse line, in which an inducible form of Cre, CreER™, is expressed under Sox2 regulatory elements. Inducible Cre activity in these mice was characterized using floxed reporters. During development, the Sox2-CreER transgenic mice show inducible Cre activity specifically in CNS stem/progenitor cells, making them a useful tool to regulate the expression of floxed genes temporally in embryonic neural stem/progenitor cells. In the adult, we examined the cell-specific expression of Sox2 and performed long-term lineage tracing. Four months after the transient induction of Cre activity, recombined GFAP+ stem-like cells and DCX+ neuroblasts were still abundant in the neurogenic regions including the subventricular zone (SVZ), rostral migratory stream (RMS), and subgranular zone (SGZ) of the dentate gyrus. These results provide definitive in vivo evidence that Sox2 is expressed in neural stem cells (NSC) in both the SVZ and SGZ that are capable of self-renewal and long-term neurogenesis. Therefore, Sox2-CreER mice should be useful in targeting floxed genes in adult neural stem cells.

Highlights

  • Evidence suggests that the HMG box transcription factor gene Sox2 marks neural stem/progenitor cells throughout development and in the adult [1,2]

  • In Sox2 hypomorphic mice and in neural-specific knockout mutants of Sox2 during development, loss of GFAP+ neural stem cells (NSC), precursor cells, and neurogenesis were observed in mature neurogenic regions including the dentate gyrus of the hippocampus and the subventricular zone (SVZ) [6,10]

  • We provide in vivo evidence that Sox2 is expressed in adult neural stem cells that are capable of self-renewal and long-term neurogenesis in both the SVZ and subgranular zone (SGZ)

Read more

Summary

Introduction

Evidence suggests that the HMG (high-mobility-group) box transcription factor gene Sox2 marks neural stem/progenitor cells throughout development and in the adult [1,2]. In Sox2 hypomorphic mice and in neural-specific knockout mutants of Sox2 during development, loss of GFAP+ neural stem cells (NSC), precursor cells, and neurogenesis were observed in mature neurogenic regions including the dentate gyrus of the hippocampus and the subventricular zone (SVZ) [6,10].

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call