Abstract

A source-load coordination scheduling strategy is proposed in this paper to reduce the system operation cost and wind power curtailment. Firstly, the scheduling model of the power system with wind power is established. To solve the scheduling problem, the binary particle swarm optimization (BPSO) algorithm is used to determine the ON/OFF states of generations; the continuous particle swarm optimization (CPSO) algorithm is used to deal with the economic load dispatch problem; and the constraints are properly handled by adjustment methods. Secondly, in order to maximize the wind power accommodation rate, the power system adopts the time-of-use price program, an optimization model of electricity price is established based on price elasticity matrix. The CPSO algorithm and parallel computing are used to optimize the time-of-use price schedules. According to the results of the case study, the demand response program plays an important role in reducing the peak-valley difference, wind power curtailment, and system operating cost. The proposed scheduling strategy and algorithm are proven to have a good optimization performance, calculation speed and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.