Abstract

A structure preserving sort-Jacobi algorithm for computing eigenvalues or singular values is presented. It applies to an arbitrary semisimple Lie algebra on its (−1)-eigenspace of the Cartan involution. Local quadratic convergence for arbitrary cyclic schemes is shown for the regular case. The proposed method is independent of the representation of the underlying Lie algebra and generalizes well-known normal form problems such as e.g. the symmetric, Hermitian, skew-symmetric, symmetric and skew-symmetric R -Hamiltonian eigenvalue problem and the singular value decomposition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.