Abstract
A simple and novel sonochemical route has been demonstrated to produce the lateral growth of zinc oxide (ZnO) nanorod arrays on a quartz wafer without the use of metal catalysts. Highly crystalline ZnO nanorods grew laterally on the edge of a Zn thin film seed layer, with preferential growth along the [0001] direction. The average diameter and length of the ZnO nanorods, grown laterally from the edge of the Zn thin film, were 156 and 933 nm, respectively. The vertical growth of ZnO nanorods on the top surface of the seed layer was suppressed by a Si thin film growth barrier. The lateral ZnO nanorod arrays showed excellent field emission properties, 60 mA/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> at 6.5 V/μm, with a low turn-on field in the range of 3.9-4.0 V/μm. Because of the compatibility of this process with current standard semiconductor microfabrication technologies, this sonochemical approach constitutes a practical technique for the design of state-of-the-art nanodevices based on laterally grown ZnO nanorod arrays on planar substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.