Abstract

The effective deployment of reactive oxygen species (ROS)-mediated oncotherapy in practice remains challenging, mired by uncontrollable catalytic processes, stern reaction conditions and safety concerns. Herein, we develop a copper nanodot integrating sonodynamic and catalytic effects within one active center, which responds to exogenous ultrasound (US) and endogenous H2 O2 stimuli. US irradiation induces the valence conversion from CuII to CuI catalyzing H2 O2 into ⋅OH for chemodynamic therapy. Meanwhile, valence transformation results in electron-hole pairs separation, promoting ROS generation for sonodynamic therapy. Notably, copper nanodots not only block lysosome fusion and degradation leading to autophagy flux blockage, but also interfere with the glutathione peroxidase 4 and cystine-glutamate antiporter SLC7A11 function achieving ferroptosis. Furthermore, reversible valence changes, inherent hydrophilicity and renal clearance ultrasmall size guarantee biosafety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.