Abstract

We revisit the computation of bubble wall friction during a cosmological first-order phase transition, using an extended fluid Ansatz to solve the linearized Boltzmann equation. A singularity is found in the fluctuations of background species as the wall approaches the speed of sound. Using hydrodynamics, we argue that a discontinuity across the speed of sound is expected on general grounds, which manifests itself as the singularity in the solution of the linearized system. We discuss this result in comparison with alternative approaches proposed recently, which find a regular behaviour of the friction for all velocities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call