Abstract

A simple analytically solvable model for blobs in magnetized plasmas is proposed. The model gives results for a scaling of the blob velocity and acceleration with varying plasma parameters. Limiting cases are considered: one where the plasma motion is strictly perpendicular to an externally imposed toroidal magnetic field, and one where the electrons can move along magnetic field lines to compensate partly the collective electric fields. For these limiting cases, the model predicts scaling laws for the dependence of the blob velocities and accelerations with varying plasma density, temperature and magnetic field strength. Also the scaling with the dominant ion mass is derived. The analysis is completed by including the effects of collisions between ions and neutrals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.