Abstract
We have developed the complex-scaling method (CSM) by using the complex-range (or oscillating) Gaussian basis functions that are suited for describing highly oscillating few-body wave functions. The eigenvalue distribution of the complex scaled Hamiltonian becomes much more precise and the maximum scaling angle becomes drastically larger than those given by the use of real-range Gaussians. Owing to this advantage, we were able to isolate the S-matrix pole of the new broad 0+3 resonance from the 3α continuum. This confirms the Kurokawa-Kato's prediction (2005) of the new 0+3 resonance, which is considered to correspond to the newly observed 0+3 resonance (Ex = 9.04 MeV, Γ = 1.45 MeV) by Itoh et al. (2013). As a result the long-standing puzzle for the 0+ and 2+ resonances above the 0+ Hoyle state in 12C was solved. In this paper, the negative parity resonances with J = 1−, 2−, 3−, 4− and 5− are newly calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.