Abstract

The analytical continuation of the surface gravity anomaly to sea level is a necessary correction in the application of Stokes' formula for geoid estimation. This process is frequently performed by the inversion of Poisson's integral formula for a sphere. Unfortunately, this integral equation corresponds to an improperly posed problem, and the solution is both numerically unstable, unless it is well smoothed, and tedious to compute. A solution that avoids the intermediate step of downward continuation of the gravity anomaly is presented. Instead the effect on the geoid as provided by Stokes' formula is studied directly. The practical solution is partly presented in terms of a truncated Taylor series and partly as a truncated series of spherical harmonics. Some simple numerical estimates show that the solution mostly meets the requests of a 1-cm geoid model, but the truncation error of the far zone must be studied more precisely for high altitudes of the computation point. In addition, it should be emphasized that the derived solution is more computer efficient than the detour by Poisson's integral.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.