Abstract

A truncation scheme for the Dyson–Schwinger equations of QCD in Landau gauge is presented which implements the Slavnov–Taylor identities for the 3-point vertex functions. Neglecting contributions from 4-point correlations such as the 4-gluon vertex function and irreducible scattering kernels, a closed system of equations for the propagators is obtained. For the pure gauge theory without quarks this system of equations for the propagators of gluons and ghosts is solved in an approximation which allows for an analytic discussion of its solutions in the infrared: The gluon propagator is shown to vanish for small spacelike momenta whereas the ghost propagator is found to be infrared enhanced. The running coupling of the non-perturbative subtraction scheme approaches an infrared stable fixed point at a critical value of the coupling,αc≃9.5. The gluon propagator is shown to have no Lehmann representation. The results for the propagators obtained here compare favorably with recent lattice calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.