Abstract

A novel electroactive star-shaped rod-coil copolymer composed of a benzene core and three symmetrically positioned tetraaniline-b-poly(ethylene glycol) arms, (TAni-b-PEG)3 rod-coil block copolymer, is synthesized successfully and characterized using Fourier transform infrared spectroscopy (FTIR), UV-vis, (1)H NMR, and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Uniform and high-quality (TAni-b-PEG)3 thin films onto indium tin oxide-coated glass surface are fabricated simply from its DMF solution. Resulting (TAni-b-PEG)3 copolymer thin films possess excellent electrochromic properties with a high optical contrast of 73.3%, superb coloration efficiency of 318.5 cm(2) C(-1) at 750 nm. Very short switching times, that is, 2.11 s and 2.14 s for coloring and bleaching times, respectively, are observed as well. The mechanism of these impressive electrochromic properties of (TAni-b-PEG)3 thin films possessed is proposed based on the atomic force microscopy investigation, star-shaped molecular geometry, synergetic electronic and ionic conductivity and amphiphilic self-assembly feature of (TAni-b-PEG)3 copolymer, which can self-assemble to form cylinder pattern consisting of quick pathways for electronic charges and ionic species, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call