Abstract

The article discusses the Crow-Kimura model in the context of random transitions between different fitness landscapes. The duration of epochs, during which the fitness landscape is constant over time, is modeled by an exponential distribution. To obtain an exact solution, a system of functional equations is required. However, to approximate the model, we consider the cases of slow or fast transitions and calculate the first-order corrections using either the transition rate or its inverse. Specifically, we focus on the case of slow transitions and find that the average fitness is equal to the average fitness for evolution on static fitness landscapes, but with the addition of a load term. We also investigate the model for a small number of genes and identify the exact transition points to the transient phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.