Abstract

Complex fuzzy sets (CFSs) have recently emerged as a potent tool for expanding the scope of fuzzy sets to encompass wider ranges within the unit disk in the complex plane. This study explores complex fuzzy numbers and introduces their application for the first time in the literature to address a complex fuzzy partial differential equation that involves a complex fuzzy heat equation under Hukuhara differentiability. The researchers utilize an implicit finite difference scheme, namely the Crank–Nicolson method, to tackle complex fuzzy heat equations. The problem’s fuzziness arises from the coefficients in both amplitude and phase terms, as well as in the initial and boundary conditions, with the Convex normalized triangular fuzzy numbers extended to the unit disk in the complex plane. The researchers take advantage of the properties and benefits of CFS theory in the proposed numerical methods and subsequently provide a new proof of the stability under CFS theory. A numerical example is presented to demonstrate the proposed approach’s reliability and feasibility, with the results showing good agreement with the exact solution and relevant theoretical aspects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.