Abstract

SummaryThermo‐hydro‐mechanical responses around a cylindrical cavity drilled or excavated in a low‐permeability formation are studied when the cavity is subjected to a time‐dependent thermal loading. The cavity is considered backfilled after it is supported by casing or lining. Solutions of temperature, pore water pressure, stress, and displacement responses are analytically formulated based on Biot's consolidation theory with the assumption that the backfilling material, supporting material, and surrounding low‐permeability formation are poroelastic media. The solution is expressed in Laplace space, and numerical inversion techniques are used to find field variables in the real‐time domain. After the solution is verified with the numerical results, it is applied in a large‐scale in situ heating test – PRACLAY heating test – for a predictive reference calculation and an extensive parametric study. Another medium‐scale in situ heating test – ATLAS III heating test – is also analyzed using the solution, which provides reasonable agreement with measurements. The new analytical solution proves to be a convenient tool for a good understanding of the resulting coupled thermo‐hydro‐mechanical behavior and is therefore valuable for the interpretation of measured data in engineering practices and for a rational design of potential radioactive waste repositories. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.