Abstract

We study a class of stochastic optimization models of expected utility in markets with stochastically changing investment opportunities. The prices of the primitive assets are modelled as diffusion processes whose coefficients evolve according to correlated diffusion factors. Under certain assumptions on the individual preferences, we are able to produce reduced form solutions. Employing a power transformation, we express the value function in terms of the solution of a linear parabolic equation, with the power exponent depending only on the coefficients of correlation and risk aversion. This reduction facilitates considerably the study of the value function and the characterization of the optimal hedging demand. The new results demonstrate an interesting connection with valuation techniques using stochastic differential utilities and also, with distorted measures in a dynamic setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.