Abstract

The regulation of the divergent promoters of the exaAB genes in Pseudomonas aeruginosa ATCC 17933, in which exaA encodes a quinoprotein ethanol dehydrogenase and exaB codes for a cytochrome c(550), was studied. Using transcriptional lacZ fusions, promoter activity during growth on several substrates was measured. These promoter-probe vectors were also used to identify regulatory mutants defective in exaAB induction. Transcription from both exaA and exaB was reduced significantly in four mutants. Two other mutants showed transcription from exaA that was reduced, but higher than wild-type transcription from exaB. The genes that are needed for exaA promoter induction were sequenced and found to encode a two-component regulatory system: a histidine sensor kinase, which lacks a transmembrane helical N-terminus and is presumably located in the cytoplasm, and a response regulator. The phenotypic characterization and restoration of the wild-type behaviour of the different regulatory mutants produced by different cosmids and subclones indicate that six different genes may be involved in regulating ethanol oxidation in P. aeruginosa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.