Abstract

AdaSGC binds Hsc70s to inhibit ATPase activity. Using single-turnover assays, adaSGC, a soluble SGC mimic, preferentially inhibited Hsp40-activated Hsc70 ATP hydrolysis (Ki approximately 10 microM) to reduce C-terminal Hsc70-peptide binding and, potentially, chaperone function. ERAD of misfolded Delta F508 CFTR requires Hsc70-Hsp40 chaperones. In transfected baby hamster kidney (BHK) cells, adaSGC increased Delta F508CFTR ERAD escape, and after low-temperature glycerol rescue, maturation, and iodide efflux. Inhibition of SGC biosynthesis reduced Delta F508CFTR but not wtCFTR expression, whereas depletion of other glycosphingolipids had no affect. WtCFTR transfected BHK cells showed increased SGC synthesis compared with Delta F508CFTR/mock-transfected cells. Partial rescue of Delta F508CFTR by low-temperature glycerol increased SGC synthesis. AdaSGC also increased cellular endogenous SGC levels. SGC in the lung, liver, and kidney was severely depleted in Delta F508CFTR compared with wtCFTR mice, suggesting a role for CFTR in SGC biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call