Abstract
Inhibition of apoptotic response of host cells during an early phase of infection is a strategy used by many enteroinvasive bacterial pathogens to enhance their survival. Here, we report the identification of a soluble form of the pilus protein FimA from the culture supernatants of E. coli K1, Salmonella, and Shigella that can potently inhibit Bax-mediated release of cytochrome c from isolated mitochondria. Similar to the infected cells, HCT116 cells stably expressing FimA display a delay in the integration of Bax into outer mitochondrial membrane induced by apoptotic stimuli. FimA targets to mitochondria through binding to VDAC1, which is a prerequisite step for E. coli K1 to render the short-term blockade of apoptotic death in the host cells. Interestingly, FimA strengthens the VDAC1-hexokinase interaction and prevents dissociation of hexokinase from VDAC1 triggered by apoptotic stimuli. Together, these data thus reveal a paradigm of antiapoptosis mechanism undertaken by the enteroinvasive bacteria.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.