Abstract

A microsegregation solidification model has been extended for an individual droplet falling through a stagnant gas during the atomization process. Assuming a uniform temperature within the droplet, the model takes into account nucleation undercooling and equiaxed growth of the dendritic and eutectic microstruc-tures until complete solidification.1 It predicts the temperature evolution and the chemical segregation within the droplet in terms of the percent of the dendritic and eutectic microstructures. Extensive experiments have been performed on Al-Cu droplets using the impulse atomization technique. The distribution of phases, cell spacing and segregation have been quantified earlier.2-4 It has been reported that the amount of eutectic in the droplets falls below the equilibrium prediction as the alloy composition increases. Successful comparison between the model results and the experiments leads to the conclusion that eutectic undercooling and eutectic recalescence play a very important role in the final percent of eutectic in the droplets. © 2009 ISIJ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.