Abstract

The artificial amphiphilic peptide LKalpha14 adopts a helical structure at interfaces, with opposite orientation of its leucine (L, hydrophobic) and lysine (K, hydrophilic) side chains. When peptides are adsorbed onto surfaces, different residue side chains necessarily have different proximities to the surface, depending on both their position in the helix and the composition of the surface itself. Deuterating the individual leucine residues (isopropyl-d(7)) permits the use of solid-state deuterium NMR spectroscopy as a site-specific probe of side-chain dynamics. In conjunction with sum-frequency generation as a probe of the peptide-binding face, we demonstrate that the mobility of specific leucine side chains at the interface is quantifiable in terms of their surface proximity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.