Abstract
During the discharge of Na–O2 batteries, O2 is reduced and combines with Na+ to form an insulating solid sodium oxide on the cathode, which severely hinders the mass transfer path, resulting in high polarization voltage, low energy efficiency, and short battery life. Hereby, we proposed a novel illumination-assisted Na–O2 battery in which bismuth vanadate (BiVO4) with few defects and high surface areas was used as the catalyst. It showed that the charge overpotential under photo assistance reduced by 1.11 V compared with that of the dark state one. Additionally, the insolating sodium oxide discharge products were completely decomposed, which was the key to running Na–O2 batteries over 200 cycles with a charge potential of no more than 3.65 V, while its counterpart (under dark condition) at 200 cycles had the charge potential higher than 4.25 V. The experiment combined with theoretical calculation shows that few defects, high surface areas, the altered electron transfer kinetics, and the low energy gap and low oxygen absorption energy of the (040) crystal face of monoclinic BiVO4 play an important role in catalyzing oxygen reduction reaction (ORR) and oxygen evolution reaction (OER).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.