Abstract

We propose a solid oxide fuel cell design based on a configuration of two electrodes on the same surface of the electrolyte in a flowing mixture of different hydrocarbons and air between 500 and 600°C. The ohmic resistance can be reduced without using a thin electrolyte film due to a significantly enhanced performance by the approach of the two electrodes to each other on the smooth electrolyte surface. The fuel cell performance, especially at reduced temperatures, is further improved by using a more reactive hydrocarbon fuel and a more catalytically active anode. The resulting power density reaches using 2 mm thicker electrolyte at 500°C. © 2002 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.