Abstract

We report a piezoelectrically driven and hydraulically amplified axial polymer microvalve. The microvalve is normally open and is assembled primarily with stereolithographically fabricated polymer components. An incompressible elastomer is used as a solid hydraulic medium to convert the small axial displacement of a piezoelectric actuator into a large valve head stroke while maintaining a large blocking force. Also, the axial design of the microvalve enables densely packed valve arrays. One application of this microvalve is in pneumatic tactile displays, which operates against gas pressure up to approximately 90 kPa and switching speed between 1 and 200 Hz. The current valve design has a maximum static hydraulic amplification ratio of 5 at 30 V driving voltage and a maximum valve head stroke of 37 µm at 150 V. Under a 94.4 kPa differential pressure, the flow rate of the valve and the closing voltage measure are 785 mL min−1 and 150 V, respectively. The function of the microvalve as an on–off switch for a pneumatic microbubble tactile actuator is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.