Abstract

Presently, the separation of oil and water through functional membranes inevitably entails either inefficient gravity-driven processes or energy-intensive vacuum pressure mechanisms. This study introduces an innovative photothermal evaporator that uses solar energy to drive oil-water separation while concurrently facilitating the detection of Fe3+ in wastewater. First, by alkali delignification, small holes were formed on the side wall of the large size tubular channel in the direction of wood growth. Subsequently, superhydrophilic SiO2 nanoparticles were in situ assembled onto the sidewalls of the tubular channels. Finally, carbon quantum dots were deposited by spin-coating on the surface of the evaporator, paralleling the growth direction of the wood. During the photothermal evaporation process, the tubular channels with small holes in the side wall parallel the bulk water, which not only ensures the effective water supply to the photothermal surface but also reduces the heat loss caused by water reflux on the photothermal surface. The superhydrophilic SiO2 nanoparticles confer both hydrophilic and oleophobic properties to the evaporator, preventing the accumulation of minute oil droplets within the device and achieving sustained and stable oil-water separation over extended periods. These carbon quantum dots exhibit capabilities for both photothermal conversion and fluorescence transmission. This photothermal evaporator achieves an evaporation rate as high as 2.3 kg m-2 h-1 in the oil-water separation process, and it has the ability to detect Fe3+ concentrations in wastewater as low as 10-9 M.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call