Abstract
To identify and extract naturalistic behavior, two methods have become popular: supervised and unsupervised. Each approach carries its own strengths and weaknesses (for example, user bias, training cost, complexity and action discovery), which the user must consider in their decision. Here, an active-learning platform, A-SOiD, blends these strengths, and in doing so, overcomes several of their inherent drawbacks. A-SOiD iteratively learns user-defined groups with a fraction of the usual training data, while attaining expansive classification through directed unsupervised classification. In socially interacting mice, A-SOiD outperformed standard methods despite requiring 85% less training data. Additionally, it isolated ethologically distinct mouse interactions via unsupervised classification. We observed similar performance and efficiency using nonhuman primate and human three-dimensional pose data. In both cases, the transparency in A-SOiD's cluster definitions revealed the defining features of the supervised classification through a game-theoretic approach. To facilitate use, A-SOiD comes as an intuitive, open-source interface for efficient segmentation of user-defined behaviors and discovered sub-actions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.