Abstract
Simulators are important tools for analyzing and evaluating different design options for wireless sensor networks (sensornets) and hence, have been intensively studied in the past decades. However, existing simulators only support evaluations of protocols and software aspects of sensornet design. They cannot accurately capture the significant impacts of various hardware designs on sensornet performance. As a result, the performance/energy benefits of customized hardware designs are difficult to be evaluated in sensornet research. To fill in this technical void, in this paper, we describe the design and implementation of SUNSHINE (Sensor Unified aNalyzer for Software and Hardware in Networked Environments), a scalable hardware-software emulator for sensornet applications. SUNSHINE is the first sensornet simulator that effectively supports joint evaluation and design of sensor hardware and software performance in a networked context. SUNSHINE captures the performance of network protocols, software and hardware up to cycle-level accuracy through its seamless integration of three existing sensornet simulators: a network simulator TOSSIM, an instruction-set simulator SimulAVR and a hardware simulator GEZEL. SUNSHINE solves several sensornet simulation challenges, including data exchanges and time synchronizations across different simulation domains and simulation accuracy levels. SUNSHINE also provides hardware specification scheme for simulating flexible and customized hardware designs. Several experiments are given to illustrate SUNSHINE's simulation capability. Evaluation results are provided to demonstrate that SUNSHINE is an efficient tool for software-hardware co-design in sensornet research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.