Abstract

A new pacemaker pulse detection and paced electrocardiogram (ECG) rhythm classification algorithm with high sensitivity and positive predictive value has been implemented as part of the Philips Medical Systems' (Andover, MA) ECG analysis program. The detection algorithm was developed on 1,108 paced ECGs with 16,029 individual pulse locations. It operates on 12-lead, 500 sample per second, 150 Hz low-pass filtered ECG signals. Even after low-pass filtering, this algorithm distinguishes between pacemaker pulses and narrow QRS complexes from newborns. An individual pulse detection sensitivity of 99.7% and positive predictive value of 99.5% was obtained by the multi-lead detector. A 10-second, 12-lead ECG database (n = 13,155) of paced (n = 2,190), non-paced adult (n = 8,070), non-paced pediatric (n = 1,209) and [ldquo ]noisy[rdquo ] ECGs with spike noise and muscle artifact (n = 1,686) was assembled and annotated by two readers. The overall performance in identification of an ECG as paced with any pacing present versus non-paced is 97.2% in sensitivity and 99.9% in specificity. The paced ECGs were classified by the mode in which the beats were paced, such as, atrial, ventricular, A-V dual, or dual/inhibited chamber (ie, combinations of atrial, ventricular and dual) pacing. An algorithm was developed for paced rhythm classification. The algorithm performance results show that accurate and robust pacemaker pulse detection and classification can be done in software on diagnostic bandwidth ECG signals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call